SUPPORTING INFORMATION

Total Syntheses of Ipomoeassin B and E

Alois Fürstner* and Takashi Nagano
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
E-mail: fuerstner@mpi-muelheim.mpg.de

General. All reactions were carried out under Ar atmosphere. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO (CaH_{2}), $\mathrm{MeOH}(\mathrm{Mg})$, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a DPX 300, AV 400 or DMX 600 spectrometer (Bruker) in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (calibration: $\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}=77.0, \delta_{\mathrm{H}}=7.26 ; \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta_{\mathrm{C}}=53.8$, $\delta_{\mathrm{H}}=5.32$). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), HRMS: Finngan MAT 95. Melting points: Büchi melting point apparatus (uncorrected). All commercially available compounds were used as received.

Preparation of the Building Blocks

Scheme S1. Conditions: a) EtMgCl, CuCN (10 mol\%), THF, $-78 \rightarrow-20^{\circ} \mathrm{C}$; b) NaOH , $\mathrm{Et}_{2} \mathrm{O}$; c) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{CuCN}\left(10 \mathrm{~mol} \%\right.$), THF, $-78 \rightarrow 0^{\circ} \mathrm{C}, 77 \%$ (overall), 99% ee; d) AgOTf, 2,6-di-tert-butylpyridine, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 84 \%$; e) KOMe cat., $\mathrm{MeOH} ;$ f) 2,2-dimethoxypropane, p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ cat., acetone, 98% (over both steps).
(S)-1-Hepten-4-ol (S-1). A solution of EtMgCl (2 M in THF, $16.2 \mathrm{~mL}, 32.4 \mathrm{mmol}$) was added dropwise to a solution of (S)-epichlorohydrin ($2.00 \mathrm{~g}, 21.6 \mathrm{mmol}$) and CuCN ($193 \mathrm{mg}, 2.16 \mathrm{mmol}$) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to $-20{ }^{\circ} \mathrm{C}$ over 3 h before it was poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were dried over MgSO_{4}, filtered and evaporated to afford crude (S)-1-chloro-pentan-2-ol, which was used without further purification.

Powdered NaOH ($4.80 \mathrm{~g}, 121 \mathrm{mmol}$) was added to a solution of the crude (S)-1-chloro-pentene-2-ol in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 22 h before it was poured into water (10 mL). The organic layer was separated, the aqueous layer was repeatedly extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic phases were dried over MgSO_{4}, filtered and evaporated to give (S)-2-propyloxirane, which was used without further purification.

To a stirred solution of the crude oxirane thus formed and CuCN ($193 \mathrm{mg}, 2.16 \mathrm{mmol}$) in THF (15 mL) was added a solution of vinylmagnesium bromide (1 M in THF, 28.1 $\mathrm{mL}, 28.1 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ over a period of 45 min . The resulting mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was repeatedly extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined ethereal extracts were washed with brine, dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, 4/1) to give (S)-1-hepten-4-ol (S-1) as a pale yellow oil ($1.91 \mathrm{~g}, 77 \%$). The NMR data are in full agreement with those previously reported in the literature. $[\alpha]_{D}^{20}=-12.8$ (с 0.52 , CHCl_{3}); lit. ${ }^{1}[\alpha]_{\mathrm{D}}^{20}=+12.7\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right)$ for (R)-enantiomer (99% ee $)$.

Compound S-3. A solution of HBr in $\mathrm{HOAc}(30 \% ~ w / w, 7.1 \mathrm{~mL}$) was added dropwise to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of 1,2,3,4-tetra-O-acetyl-D-fucopyranose ${ }^{2}$ ($2.08 \mathrm{~g}, 6.26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.96 \mathrm{~mL})$ and the resulting mixture was stirred for 0.5 h at room temperature once the addition was complete. The mixture was then concentrated in vacuo and the resulting oil was azeotroped with toluene (3 times) to give crude glycosyl bromide S-2 which was used in the following step without further purification. To a suspension of activated MS $4 \AA$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added a solution of the

[^0]crude bromide $\mathbf{S - 2}$ prepared above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 10 minutes before (S)-1-hepten-4-ol (S-1) (476 mg, 4.17 mmol), 2,6-di-tert-butylpyridine ($2.40 \mathrm{~g}, 12.5 \mathrm{mmol}$), and AgOTf ($1.90 \mathrm{~g}, 7.32 \mathrm{mmol}$) were successively added. Stirring was continued for 14 h before the suspension was filtered through a pad of Celite and the filtrate was evaporated. The residue was purified by flash chromatography on silica (hexanes/tert-butyl methyl ether, 6/1) to give compound S-3 as a colorless syrup ($1.36 \mathrm{~g}, 84 \%$). $[\alpha]_{\mathrm{D}}^{20}=-20.1$ (c $0.73, \mathrm{CHCl}_{3}$). IR (KAP): $\tilde{v}=3076,2961,2937,2873,1752,1641,1368,1250,1223,1074,915 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.77$ (ddt, $J=7.0,10.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (dd, $J=1.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dq}, J=1.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.34(\mathrm{~m}$, $4 \mathrm{H}), 1.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=170.8,170.3,169.4,134.4,117.1,100.4,79.7,71.5,70.4,69.3,68.9,38.4,36.6$, 20.9, 20.7, 20.6, 18.3, 16.1, 14.0. MS (EI): m/z (\%): 273 (27), 157 (17), 153 (25), 115 (13), 111 (24), 83 (12), 55 (23), 43 (100). HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{8}[\mathrm{Na}]^{+} 409.183143$, found 409.183288.

Compound S-4. Compound S-3 ($1.92 \mathrm{~g}, 4.97 \mathrm{mmol}$) was dissolved in MeOH (20 mL) and treated with KOMe ($18 \mathrm{mg}, 0.25 \mathrm{mmol}$) for 3 h . The mixture was neutralized with $\mathrm{HCl}(1 \mathrm{~m})$ and the solvent was evaporated. The residue was suspended in EtOAc, the mixture passed through a short-pad of silica to remove the inorganic salts, and the filtrate was evaporated. A solution containing the resulting crude product, 2,2'-dimethoxypropane (4.4 mL) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (ca. 20 mg) in acetone (15 mL) was stirred at room temperature for 15 h . For work-up, the solvent was evaporated and the residue purified by flash chromatography on silica (hexanes/EtOAc, 6/1 $\rightarrow 4 / 1$) to give glycoside S-4 as a colorless syrup ($1.46 \mathrm{~g}, 98 \%$). $[\alpha]_{\mathrm{D}}^{20}=+3.4$ (c $1.18, \mathrm{CHCl}_{3}$). IR (KAP): $\tilde{v}=3483,3076,2983,2959,2935,2872,1641,1380,1073,1036,990,918$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.83$ (ddt, $J=7.2,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13-5.08$ (m, $2 \mathrm{H}), 4.17$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dq}, J=2.2,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72-3.66 (m, 1H), 3.50 (dd, $J=7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35-2.23 (m, 3H), 1.65-1.33 (m, $13 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.9,117.6,109.8$, 101.6, 78.8, 78.7, 76.3, 73.8, 69.1, 38.7, 37.0, 28.2, 26.3, 18.4, 16.6, 14.0. MS (EI): m/z (\%): 187 (84), 129 (16), 113 (12), 101 (43), 100 (37), 97 (19), 85 (20), 83 (26), 73 (22), 71 (45), 59 (100), 57 (34), 55 (79), 43 (72), 41 (36), 29 (20). HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{Na}]^{+}$323.182872, found 323.182895.

Scheme S2. Conditions: a) 1-bromo-3-pentene, Mg , THF, then 2-furylcarbaldehyde, 82%; b) $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{D}-(-)$-diisopropyltartrate (DIPT), t - $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 47 \%$ (= 94% theoretical yield), > 99 ee ; c) t - $\mathrm{BuOOH}, \mathrm{VO}(\mathrm{acac})_{2}$ ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 71 \%$; d) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, $0^{\circ} \mathrm{C}$; e) $\mathrm{Zn}, \mathrm{HOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$ (over both steps); f) (i) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SiMe}_{3}, p$-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%, 97 \%$ $e e$ (over both steps); g) TASF, DMF, 68\%.
dl-5-Hydroxy-5-(2-furyl)-1-pentene (rac-15). Magnesium turnings (335 mg, 13.8 mmol) in THF (1 mL) were activated with 1,2-dibromoethane ($25 \mu \mathrm{~L}$) before additional THF (7.0 mL) was added. A solution of 1-bromo-3-pentene ($1.70 \mathrm{~g}, 12.5 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ was added over 30 min and the mixture was stirred at ambient temperature for 1 h . The solution of the resulting Grignard reagent was cooled to $0{ }^{\circ} \mathrm{C}$ before 2-furylcarbaldehyde ($1.0 \mathrm{~g}, 10.4 \mathrm{mmol}$) was introduced at that temperature. After 2 h , the mixture was quenched with aq. $\mathrm{HCl}(1 \mathrm{~m})$, the aqueous layer was repeatedly extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined ethereal phases were washed with brine, dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 9/1) to give product rac-15 as a pale yellow oil (1.30 g, 82\%). IR (KAP): $\tilde{v}=3366,2943,2863,1641,1505,1149,1066,1009,913,738,599 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37$ (dd, $J=0.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.33 (dd, $J=1.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.24 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddt, $J=6.6,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.97$ (m, 2H), 4.70 (t, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.12 (m, 2H), 1.98-1.92 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=156.6,142.0,137.8,115.2,110.1,105.9,67.2,34.6,29.7$. MS (EI): m / z (\%): 152 (3), 134 (5), 123 (3), 110 (23), 97 (100), 69 (12), 41 (35), 39 (28), 29 (12), 27 (13). HRMS: calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ 152.083577, found 152.083730.

Kinetic resolution: Preparation of (-)-15. D-(-)-DIPT ($2.50 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added to a solution of $\mathrm{Ti}(\mathrm{OiPr})_{4}(2.90 \mathrm{~mL}, 9.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$. After
stirring for 10 min , the mixture was cooled to $-30^{\circ} \mathrm{C}$ and a solution of $\mathrm{rac}-15(1.50 \mathrm{~g}$, 9.86 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was slowly introduced. After stirring for 30 min , a solution of tert-butylhydroperoxide (5 M in decane, $1.18 \mathrm{~mL}, 5.92 \mathrm{mmol}$) was added, and the mixture was stirred for 24 h at $-20{ }^{\circ} \mathrm{C}$. For work-up, the mixture was filtered through a short pad of silica and the filtrate was evaporated. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 9/1) to give (-)-15 as a pale yellow oil ($701 \mathrm{mg}, 47 \%,>99 \% ~ e e$). The ee was determined by chiral HPLC (Chiralcel OB-H, Hexane $/ \mathrm{iPrOH}=95 / 5$). The NMR data are identical with those of the racemic sample described above. $[\alpha]_{\mathrm{D}}^{20}=-6.6$ (c 1.12, CHCl_{3}).

Compound 16. To a solution of alcohol (-)-15 (333 mg, 2.19 mmol) and $\mathrm{VO}(\mathrm{acac})_{2}$ ($6.00 \mathrm{mg}, 0.023 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$) was added tert-butylhydroperoxide (TBHP, 5 M in decane, $0.44 \mathrm{~mL}, 2.19 \mathrm{mmol}$). After stirring for 1 h at room temperature, additional $\mathrm{VO}(\mathrm{acac})_{2}(6.00 \mathrm{mg}, 0.023 \mathrm{mmol})$ and TBHP $(0.44 \mathrm{~mL}, 2.19 \mathrm{mmol})$ were added and stirring was continued for 2 h . The mixture was then passed through a short pad of silica, the filtrate was evaporated, and the residue purified by flash chromatography on silica (hexanes/EtOAc, 4/1) to give compound 16 as a mixture of diastereomers ($262 \mathrm{mg}, 71$ \%, major/minor $=69 / 31$). IR (KAP): $\tilde{v}=3411,3077$, 2926, 1690, 1641, 1089, 1033, 916. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.94$ (dd, $J=1.5$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}$ of minor isomer), 6.90 (dd, $J=3.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}$ of major isomer), 6.16 (dd, $J=1.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}$ of minor isomer), 6.11 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$ of major isomer), $5.87-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.18-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=3.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}$ of major isomer), 4.11 (ddd, $J=1.2,3.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}$ of minor isomer), 3.34 (br, 1 H of minor isomer), 3.06 (br, 1H of major isomer), 2.24-2.18 (m, 2H), 2.07-2.03 (m, 1H), 1.18-1.74 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.5$ (major), 196.1 (minor), 147.6 (minor), 144.2 (major), 137.7 (major), 137.5 (minor), 128.8 (minor), 127.7 (major), 115.5 (minor), 115.4 (major), 90.9 (minor), 87.7 (major), 78.0 (minor), 73.3 (major), 29.7 (minor), 29.1 (minor), 29.0 (major), 28.8 (major). MS (EI): m/z (rel. intensity): 168 (4), 114 (20), 84 (100), 56 (28), 55 (39), 39 (10), 29 (12), 28 (12), 27 (14). HRMS: calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} 168.078643$, found 168.078521.

Compound 17. Jones' reagent (1.7 mL$)^{3}$ was added dropwise to an ice-cold solution of hemiacetal 16 ($413 \mathrm{mg}, 2.46 \mathrm{mmol}$) in acetone (13 mL). The resulting mixture was stirred for 3 h at room temperature. The mixture was diluted with tert-butyl methyl ether

[^1](50 mL) and washed with water, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give the crude oxidation product. To a solution of this material in CHCl_{3} $(26 \mathrm{~mL})$ and $\mathrm{AcOH}(17 \mathrm{~mL})$ was added zinc powder (1.2 g). The suspension was stirred for 3 h at room temperature before it was filtered through Celite. The filtrate was evaporated aceotropically with benzene to remove residual HOAc and the crude product was purified by flash chromatography (hexanes/tert-butyl methyl ether, $2 / 1 \rightarrow 1 / 1$) to give compound 17 as a colorless oil ($324 \mathrm{mg}, 78 \%$). $[\alpha]_{\mathrm{D}}^{20}=-246.3\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right)$. IR (KAP): $\tilde{v}=3079,2929,1759,1735,1641,1267,1171,999,919 .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.77$ (ddt, $J=6.7,10.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11-5.02$ (m, 2H), 4.68 (dd, J $=4.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.4,170.0,136.5$, 116.4, 82.2, 33.8, 29.6, 28.6, 28.2. MS (EI): m/z (\%): 168 (5), 114 (72), 98 (3), 86 (5), 56 (100), 55 (27), 42 (10), 41 (12), 39 (13), 29 (18), 28 (53), 27 (22). HRMS: calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} 168.078649$, found 168.078862.

Compound 18. To a solution of ketolactone 17 ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$) and 2-trimethylsilylethanol ($0.17 \mathrm{~mL}, 1.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 mg). After stirring for 15 h , the mixture was neutralized with triethylamine and passed through a pad of silica which was carefully rinsed with EtOAc. The filtrate was evaporated, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and treated with triethylamine ($0.50 \mathrm{~mL}, 3.54 \mathrm{mmol}$), $\mathrm{Ac}_{2} \mathrm{O}(0.22 \mathrm{~mL}, 2.36 \mathrm{mmol})$ and DMAP (10 mg , 0.08 mmol). After 3 h , the suspension was filtered through a pad of silica which was carefully rinsed with EtOAc. Evaporation of the solvent followed by flash chromatography of the residue (hexanes/EtOAc, 10/1) gave compound 18 as a colorless oil ($156 \mathrm{mg}, 93 \%, 97 \%$ ee). The ee was determined by chiral HPLC column (Chiralcel AD , Heptane $/ \mathrm{iPrOH}=98 / 2$). $[\alpha]_{\mathrm{D}}^{20}=-4.3$ (c 0.62, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3079$, 2954, 1732, 1642, 1249, 1235, 1063, 996, 919, 860, 839, 695. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=5.81$ (ddt, $\left.J=6.6,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09-4.98(\mathrm{~m}, 3 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H})$, 2.78-2.72 (m, 2H), 2.56-2.51 (m, 2H), 2.21-2.11 (m, 5H), 1.92-1.80 (m, 2H), 0.97 (m, $2 \mathrm{H}), 0.04$ (s, 9 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=206.2,172.7,170.8,137.4,115.9$, 78.0, 63.2, 33.7, 30.1, 29.6, 27.9, 20.8, 17.6, -1.5 (3C). MS (EI): m/z (\%): 43 (47), 73 (100), 117 (33), 133 (10), 173 (82). HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}_{1}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 351.159826, found 351.159979.

Acid 19. A solution of compound 18 ($50 \mathrm{mg}, 0.176 \mathrm{mmol}$) in DMF (1.0 mL) was added to a solution of TASF ($73 \mathrm{mg}, 0.264 \mathrm{mmol}$) in DMF (1.0 mL). After stirring for 3 h , the mixture was filtered through a pad of silica which was rinsed with EtOAc several times,
and the combined filtrates were evaporated. Flash chromatography (hexanes/EtOAc/HOAc, 2/1/0.01) of the residue gave carboxylic acid 19 as a colorless oil ($28 \mathrm{mg}, 68 \%$). $[\alpha]_{\mathrm{D}}^{20}=-2.1$ (c $0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $v\left(\mathrm{~cm}^{-1}\right)=3079,2928$, 1741, 1731, 1713, 1642, 1237, 999, 918. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=5.81$ (ddt, J $=6.7,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.99(\mathrm{~m}, 3 \mathrm{H}), 2.80-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 5 \mathrm{H})$, 1.92-1.80 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=206.1,177.9,170.9,137.4,115.9$, 78.0, 33.5, 30.0, 29.6, 27.5, 20.8. MS (EI): m/z (\%): 43 (100), 85 (12), 101 (40), 114 (7), 132 (5), 174 (6). HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$ 251.088993, found 251.089031.

Scheme S3. Conditions: a) $\mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$ cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; b) compound S-4, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:1), $-20^{\circ} \mathrm{C}, 77 \%$; c) KOMe cat., $\mathrm{MeOH}, 84 \%$.

Trichloroacetimidate S-6. To a solution of substrate S-5 ${ }^{4}$ ($1.00 \mathrm{~g}, 2.62 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added trichloroacetonitrile $(0.48 \mathrm{~mL}, 4.79 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(85$ $\mathrm{mg}, 0.26 \mathrm{mmol}$). The resulting mixture was stirred for 15 h at ambient temperature before it was filtered through a pad of silica and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 2/1) to give trichloroacetimidate S-6 as a mixture of anomers ($1.19 \mathrm{~g}, 86 \%, \alpha: \beta=2: 1$). $[\alpha]_{\mathrm{D}}^{20}=+25.9$ (c $0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR $(\mathrm{KBr}): \tilde{v}=3348,2940,1754,1676,1616,1589,1519,1236,1071,1033,834 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.81$ (s, 1 H of β-anomer), 8.71 (s, 1 H of α-anomer), 7.37-7.35 (m, 2H), 6.89-6.86 (m, 2H), 6.53 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$ of α-anomer), 6.00 (d, J $=7.7 \mathrm{~Hz}, 1 \mathrm{H}$ of β-anomer), 5.61 (t, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$ of α-anomer), 5.49 (s, 1 H of α-anomer), 5.48 (s, 1H of β-anomer), 5.35 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$ of β-anomer), 5.26 (dd, J

[^2]$=7.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}$ of β-anomer), 5.12 (dd, $J=3.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}$ of α-anomer), 4.37 (dd, J $=4.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}$ of β-anomer), 4.31 (dd, $J=5.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}$ of α-anomer), 4.13-4.05 (m, 1H), 4.88-3.72 (m, 5H), 2.06 ($\mathrm{s}, 3 \mathrm{H}$ of α-anomer), 2.04 (s, 3H of β-anomer), 2.02 (s, 3H of β-anomer), 2.01 (s, 3H of α-anomer). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): α-anomer: $\delta=170.4,170.0,161.3,160.6,129.7,127.8$ (2C), 113.9 (2C), 102.0, 93.9, 78.9, 70.7, 69.0, 68.7, 67.4, 65.5, 55.6, 21.0, 20.6; β-anomer: $\delta=170.4,169.4,161.0,160.6,129.7$, 127.9 (2C), 113.9 (2C), 102.0, 96.2, 78.3, 71.8, 71.4, 68.7, 67.4, 65.5, 55.6, 20.9, 20.7. MS (EI): m/z (\%): 527 (22), 365 (9), 179 (16), 137 (51), 136 (100), 135 (71), 43 (85). HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{~N}_{1} \mathrm{O}_{9}\left[\mathrm{M}^{+}+\mathrm{H}\right] 526.043294$, found 526.043271.

Disaccharide S-7. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.25 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.90 \mathrm{~mL}\right)$ was added to a solution of trichloroacetimidate S-6 ($746 \mathrm{mg}, 1.41 \mathrm{mmol}$) and alcohol S-4 ($500 \mathrm{mg}, 1.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (2.0 mL each) at $-20{ }^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min , the reaction was quenched with sat. aq. NaHCO_{3} and the mixture diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 4/1) to give disaccharide S-7 as a white solid ($696 \mathrm{mg}, 77 \%$). $\mathrm{mp}=129-130{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=-35.1$ (c $0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3073,2936,2873,1755,1640,1616,1518,1371,1244,1219,1175,1099$, 1073, 1037, 920, 831. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.90 (ddt, $J=7.2,10.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.46 (s, 1H), 5.28-5.23 (m, $1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.33$ (dd, $J=5.0$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=2.1,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82-3.49(\mathrm{~m}, 9 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.31(13 \mathrm{H})$, 0.92 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.3,169.8,160.6,135.7$, 130.0 (2C), 127.8, 116.8, 113.8 (2C), 110.0, 101.8, 100.6, 100.1, 80.2, 79.7, 78.7, 78.5, 76.9, 73.0, 72.3, 69.0, 68.8, 66.7, 55.6, 38.9, 37.1, 28.1, 26.4, 21.0, 20.9, 18.7, 16.7, 14.2. MS (EI): m/z (\%): 43 (100), 55 (54), 57 (13), 59 (16), 97 (16), 99 (78), 100 (45), 109 (14), 121 (14), 127 (14), 135 (28), 136 (26), 137 (38), 169 (26), 179 (53), 305 (30), 365 (63), 366 (13), 551 (13). HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{O}_{13}\left[\mathrm{M}^{+}+\mathrm{H}\right] 665.317321$, found 665.316665.

Disaccharide 3. A solution of disaccaride S-7 ($686 \mathrm{mg}, 1.06 \mathrm{mmol}$) and KOMe (10 mg) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred for 4 h before it was filtered through a pad of silica and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 2/1 \rightarrow $0 / 1$) to give disaccharide 3 as a white solid ($518 \mathrm{mg}, 84 \%$). $\mathrm{mp}=68-69{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=$ -9.9 (с 1.21, $\mathrm{C}_{2} \mathrm{HCl}_{2}$). IR (KAP): $\tilde{v}=3459,3072,2935,2872,1640,1615,1589$, $1518,1382,1250,1075,1034,923,831 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.43$ (d, $J=$
$8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{ddt}, J=7.1,10.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}$, $1 \mathrm{H}), 5.14-5.07$ (m, 2H), 4.69 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.35 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dd, $J=$ $4.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=5.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=2.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86-3.44 (m, 12H), 2.80 (br, 1H), 2.32 (m, 1H), 1.66 (br, 1H), 1.56-1.30 (m, 13H), 0.94 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=160.6,135.4,130.2$ (2C), 127.9, 116.9, 113.8 (2C), 110.4, 104.3, 102.1, 100.2, 96.0, 81.0, 79.2, 78.6, 77.0, 76.3, 73.2, 69.0, 68.8, 67.3, 55.6, 38.6, 36.9, 28.0, 26.3, 18.5, 16.6, 14.2. MS (EI): m/z (\%): 41 (18), 43 (20), 55 (63), 57 (25), 59 (25), 69 (14), 73 (14), 85 (14), 97 (14), 99 (100), 100 (58), 101 (11), 135 (29), 136 (37), 137 (70), 281 (78), 282 (13), 467 (35). HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{11}\left[\mathrm{M}^{+}+\mathrm{H}\right] 581.296842$, found 581.296186.

Regioselective Acylation: Preparation of Compound 4. A solution of diol 3 (690 mg , 1.19 mmol), DMAP ($73.0 \mathrm{mg}, 0.60 \mathrm{mmol}$) and DCC ($293 \mathrm{mg}, 1.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ was stirred for 5 min prior to the addition of (E)-2-methylbutenoic acid (119 $\mathrm{mg}, 1.19 \mathrm{mmol}$). Stirring was continued overnight and the precipitate formed was filtered off through a pad of silica. The insoluble residues were thoroughly washed with EtOAc and the combined filtrates were evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $4 / 1 \rightarrow 0 / 1$) to give disaccharide 4 and its regioisomer 4a ($\mathbf{4} / \mathbf{4} \mathbf{a}=9 / 1$). Further purification was performed by preparative HPLC (Nucleodur 100-16-C18/A; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=4 / 1$; flow rate: $35.0 \mathrm{~mL} / \mathrm{min}$; pressure: 4.1 MPa) to give pure 4 ($432 \mathrm{mg}, 55 \%$) and pure $\mathbf{4 a}(45 \mathrm{mg}, 6 \%)$, respectively. Analytical and spectroscopic data of compound 4: Colorless solid, $\mathrm{mp}=72-73^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{20}=-24.7$ (c
 $0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) IR (KAP): $\tilde{v}=3474,3072,2935$, 2873, 1718, 1651, 1589, 1518, 1381, 1252, 1175, 1075, 1036, 990, 923, 829. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~m}$, 1H), 6.86 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.91 (ddt, $J=7.1$, $10.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (s, 1H), 5.24 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11-5.03$ (m, 2H), 4.77 (d, J $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=2.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83-3.50(\mathrm{~m}, 9 \mathrm{H}), 3.36(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.33$ (m, 14H), 0.91 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.7,160.5$, 138.3, 135.4, 130.1, 128.6, 127.8 (2C), 117.0, 113.8 (2C), 110.4, 104.4, 101.9, 100.1, 81.0, 79.3, 79.2, 78.4, 77.0, 74.8, 73.5, 69.0, 68.9, 67.3, 55.6, 38.6, 36.9, 28.1, 26.3, 18.6, 16.6, 14.6, 14.2, 12.3. MS (EI): m/z (\%): 43 (17), 55 (65), 57 (11), 59 (13), 83 (100), 97 (12), 99 (63), 100 (33), 121 (13), 135 (20), 136 (26), 137 (32), 179 (13), 363 (24), 549 (20). HRMS: calcd. for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{O}_{12}\left[\mathrm{M}^{+}+\mathrm{H}\right] 663.338772$, found 663.338055.

Analytical and spectroscopic data of compound 4a: mp $=67-68{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{20}=-7.0$ (c $0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) IR (KBr): $\tilde{v}=3494,3074,2935,2872,1722,1651,1616,1589,1519$, 1303, 1174, 921, 830. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H})$, 6.89 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.90$ (ddt, $J=7.1,10.2$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 3 \mathrm{H})$, 4.91-4.87 (m, 1H), 4.31 (dd, $J=5.0,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.86(\mathrm{~m}, 3 \mathrm{H})$, $3.81-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ $(\mathrm{m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.29(\mathrm{~m}, 13 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.6,160.6,138.6,135.7,130.2,128.6,127.9$ (2C), 116.8, 113.9 (2C), 109.9, 102.1, 100.3, 100.2, 81.3, 79.8, 79.3, 78.8, 76.8, 75.3, 73.1, 69.1, 68.8, 66.5, 55.6, 38.9, 37.1, 28.0, 26.3, 18.7, 16.7, 14.6, 14.2, 12.3. MS (EI): m/z (\%): 549 (8), 363 (98), 219 (19), 209 (12), 179 (19), 137 (18), 136 (18), 135 (16), 100 (24), 99 (41), 83 (100), 55 (28). HRMS: calcd. for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{12}\left[\mathrm{M}^{+}+\mathrm{Na}\right] 685.319445$, found 685.319537.

Compound 5. TBSOTf ($87.0 \mathrm{~mL}, 0.30 \mathrm{mmol}$) was added to a solution of compound 4 ($100 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 2,6-lutidine ($69.0 \mathrm{~mL}, 0.75$
 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the resulting mixture was stirred for 2 h . Evaporation of the solvent followed by purification of the residue by preparative TLC (hexanes/EtOAc, 4/1) gave product 5 as a colorless solid ($112 \mathrm{mg}, 96 \%$). $\mathrm{mp}=54-55^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}$ $=-11.7$ (c $\left.0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=3073,2958,2934,2859,1724,1653,1616$, 1519, 1252, 1181, 1085, 923, 837, 779, 671. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.20$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{ddt}, J=7.0,10.2,17.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.34(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=$ $5.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89(\mathrm{dd}, J=2.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 3 \mathrm{H})$, 3.43-3.39 (m, 1H), $2.18(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.19(\mathrm{~m}, 13 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=5.0$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.73 (s, 9H), -0.02 (s, 3H), -0.11 ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.2,160.5,138.1,135.6,130.3,128.8,127.7$ (2C), 116.8, 113.8 (2C), 110.0, 101.6, 100.6, 100.0, 80.0, 79.6, 78.4, 77.0, 76.2, 74.8, 74.3, 69.1, 68.9, 66.5, 55.6, 38.8, 36.9, 28.0, 26.4, 25.9 (3C), 18.8, 18.3, 16.7, 14.5, 14.2, 12.3, -3.6, -4.8. MS (EI): m/z (\%): 719 (10), 663 (12), 477 (7), 283 (13), 211 (18), 183 (18), 179 (21), 158 (10), 157 (79), 136 (17), 135 (13), 121 (35), 99 (23), 97 (19), 83 (100), 73 (29), 59 (14), 55 (79), 43 (14). HRMS: calcd. for $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{12} \mathrm{Si}\left[\mathrm{M}^{+}+\mathrm{Na}\right] 799.405930$, found 799.405236.

(Z)-3-Dimethyl(phenyl)silyl-2-propenoic Acid as Protected Cinnamic Acid Surrogate

Scheme S4. Conditions: a) (i) $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}, \mathrm{Et}_{2} \mathrm{O}$, then I_{2}, (ii) $\mathrm{PhMe} \mathrm{P}_{2} \mathrm{SiCl}$, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP cat, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 87 \%$, cf. ref.; b) BuLi, THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 50 \%$, cf. ref.; c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; d) NaClO_{2}, 2-methyl-2-butene, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 93 \%$ (over both steps).
(Z)-3-Dimethyl(phenyl)silyl-2-propenoic acid (8). Oxalyl chloride ($0.13 \mathrm{~mL}, 1.49$ mmol) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a solution of DMSO ($0.21 \mathrm{~mL}, 2.99 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and the mixture as stirred for 15 min at that temperature. A solution of (Z)-3-dimethyl(phenyl)silyl-2-propene-1-ol (S-9) ${ }^{5}$ ($267 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) was introduced and the resulting suspension was stirred for 45 min , at which point $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 3.98 \mathrm{mmol})$ was added. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 1.5 h before it was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was repeatedly extracted with ether, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated to afford the corresponding aldehyde $\mathbf{S - 1 0}$ as a pale yellow oil which was used without further purification (239 mg , 90\%). Characteristic data: IR (KAP): $\tilde{v}=2839,2739,1677,1489,1428,1254,1111$, 814, 783, 733, 701, 641, 472. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=9.83$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 0.34 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=192.9,168.4,144.6,143.7$ (2C), 138.2, 134.1 (2C), 130.0, 128.6 (3C), 127.8, 126.7 (2C), 0.3 (2C). MS (EI): m/z (\%): 135 (51), 189 (78), 251 (100), 266 (9). HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{1} \mathrm{Si}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$ 289.101916, found 289.101840.

[^3]A solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($73 \mathrm{mg}, 0.61 \mathrm{mmol}$) in water (0.48 mL), 2-methyl-2-butene (0.21 mL), and $\mathrm{NaClO}_{2}(109 \mathrm{mg}, 1.2 \mathrm{mmol})$ were successively added to a solution of the crude aldehyde $\mathbf{S}-\mathbf{1 0}(100 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $t \mathrm{BuOH}(3.0 \mathrm{~mL})$. The mixture was stirred for 2.5 h at ambient temperature, all volatiles were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc/AcOH, 100:10:0.1) to give acid 8 ($99.8 \mathrm{mg}, 93 \%$) as a white solid. $\mathrm{mp}=77-78{ }^{\circ} \mathrm{C}$. IR (KAP): $\tilde{v}=3022,2954,1694$, 1589, 1489, 1410, 1313, 1251, 815, 701. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.49$ (m, 2H), 7.30-7.24 (m, 6H), 7.08-7.05 (m, 2H), 6.44 (s, 1H), 0.37 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,144.8,138.2,133.7$ (2C), 132.9, 128.7, 128.0 (2C), 127.5 (3C), 126.9, 126.4 (2C), 95.7, -0.9 (2C). MS (EI): m/z (\%): 75 (20), 205 (60), 267 (100), 282 (1). HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}$ 281.100333, found 281.100638.

Model Studies Defining the Conditions for the Proto-Desilylation

$\mathbf{N r}$	Reagent	Conditions	Result
1	TBAF	THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$	cleavage of tiglate ester
2	TBAF	THF/DMSO, methyl propionate, $80^{\circ} \mathrm{C}, 20$ min	cleavage of tiglate ester
3	AgF	THF/MeOH, rt, 20h	no reaction
4	TASF	MeCN, rt, 6h	5a (93\%)

	Reagent	Conditions	Result
$\mathbf{N r}$	$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CHCl}_{3}, \mathrm{rt}, 2 \mathrm{~h}$	no reaction
1	AgF^{6}	$\mathrm{THF} / \mathrm{MeOH}, \mathrm{rt}, 5 \mathrm{~h}$	methyl cinnamate (32\%)
2	TASF	MeCN, rt, 16h	methyl cinnamate (94\%)

The model studies summarized above suggested that only TBAF would be appropriate for the final deprotection steps in the projected total syntheses of ipomoeassin B and E.

Reductive Cleavage of the 4,6-O-p-Methoxybenzylidene Acetal

Entry	Conditions	Product	Ref.
1	BH_{3} THF, $\mathrm{Cu}(\mathrm{OTf})_{2}$ (15 mol\%), THF, RT, 1h	decomposition	7
2	$\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{Bu}_{2} \mathrm{BOTf}$ (1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 4 \mathrm{~h}$	decomposition	8
3	Dibal-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}$	reduction of ester	9
4	PMHS, $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 15 \mathrm{~h}$	decomposition	10
5	$\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{PhBCl}_{2}, \mathrm{MS} 4 \AA \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	decomposition	11
6	$\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{TMSCl}, \mathrm{MS} 4 \AA$, MeCN, RT, 15h	81\% (7:6 = 4:1)	12

6 (a) Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 2182-2183. (b) F. Lacombe, K. Radkowski, A. Fürstner, Tetrahedron 2004, 60, 7315-7324.
7 Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Angew. Chem., Int. Ed. 2005, 44, 1665-1668.
8 Wu, X.; Schmidt, R. R. Eur. J. Org. Chem. 2004, 2826-2832.
9 Crich, D.; Banerjee, A. Org. Lett. 2005, 7, 1395-1398.
${ }^{10}$ Chandrasekhar, S.; Reddy, Y. R.; Reddy, C. R. Chem. Lett. 1998, 1273-1274.
11 Sakagami, M.; Hamana, H. Tetrahedron Lett. 2000, 41, 5547-5551.

Compounds 6 and 7. Disaccharide 5 ($500 \mathrm{mg}, 0.643 \mathrm{mmol}$) was added to a suspension of freshly activated MS $4 \AA(1.7 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ and the resulting mixture was stirred for 15 min at that temperature. $\mathrm{NaBH}_{3} \mathrm{CN}(404 \mathrm{mg}, 6.43 \mathrm{mmol})$ was then introduced before the suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and TMSCl ($0.82 \mathrm{~mL}, 6.43 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature and stirring was continued for 3 h . The suspension was filtered through Celite, the filtrate was diluted with $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was washed with sat. aq. NaHCO_{3}, dried over sodium sulfate, filtered and evaporated. The residue was purified by flash chromatography to give a mixture of the reduction products ($308 \mathrm{mg}, 62 \%, 7 / 6=3.5 / 1$). This mixture does not need to be further purified because compound 9 derived thereof can be isolated in pure form by conventional chromatography at the next step (see below). For analytical purposes, however, the regioisomers were separated by preparative HPLC (Nucleodur 100-16-C18/A; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=4 / 1$; flow rate: $35.0 \mathrm{~mL} / \mathrm{min}$; pressure: 4.1 MPa) to give product $7(210 \mathrm{mg}, 42 \%)$ and regioisomer $6(24 \mathrm{mg}, 5 \%)$ which showed the following spectroscopic and analytical properties:

Compound 7: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.28$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.92(\mathrm{~m}, 1 \mathrm{H})$,
 6.87 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.90 (ddt, $J=7.1,10.2,17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09-4.99(\mathrm{~m}, 3 \mathrm{H}), 4.93$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.54 (d, J $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.14 (m, 1H), 3.98 (dd, $J=2.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-3.40(\mathrm{~m}, 11 \mathrm{H}), 2.75$ (br s, 1H), 2.28 (m, 2H), 1.84-1.71 (m, 6H), 1.55-1.31 (m, 13 H), $0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ (s, 9H), 0.07 (s, 3H), -0.02 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=168.6,159.7$, 138.7, 135.7, 130.4, 129.9 (2C), 128.7, 116.8, 114.0 (2C), 110.0, 100.1, 99.9, 80.2, 79.3, $78.4,77.0,75.9,74.7,73.6,73.3,71.2,69.5,68.9,55.6,38.8,36.9,28.0,26.5,25.9$ (3C), 18.8, 18.3, 16.8, 14.5, 14.1, 12.2, $-3.5,-4.9$. HRMS: calcd. for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{12} \mathrm{Si}_{1}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 801.421577, found 801.422035.

Compound 6: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 1 \mathrm{H})$,
 6.82 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.91 (ddt, $J=7.1,10.2,17.2 \mathrm{~Hz}$, 1H), 5.22 (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11-5.03 (m, 2H), 4.95 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15 (dd, $J=5.7,6.8 \mathrm{H}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=2.1,5.6 \mathrm{~Hz}$, 1H), 3.84-3.76 (m, 6H), 3.71-3.65 (m, 2H), $3.61(\mathrm{t}, \mathrm{J}=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52$ (dd, $J=7.5,9.0,1 \mathrm{H}$), 3.42-3.38 (m, 1H),

[^4]2.28 (m, 2H), 1.84-1.79 (m, 6H), 1.65 (br s, 1H), 1.55-1.32 (m, 13 H), 0.09 (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.1,159.7,138.26,135.6,130.5,130.1$ (2C), 129.0, 116.8, 114.0 (2C), 110.0, 100.2, 100.1, 80.0, 78.5, 77.5, 77.0, 76.6, 76.3, 75.5, 74.3, 73.8, 69.0, 62.0, 55.5, 38.8, 36.9, 28.1, 26.3, 25.8 (3C), 18.7, 18.2, 16.7, 14.6, 14.1, 12.3, -3.6, -4.8.

The assigned regiochemistry was further corroborated by acylation of both isomers. The corresponding ring proton $\mathrm{H}-6,6$ ' ($\mathrm{m}, 2 \mathrm{H}$) in 6 and H-4 (app. t, 1H) in 7 showed the expected acylation shifts.

Model Studies on Selective Hydrogenation

Conditions

	S-11	S-12	S-13	S-14
H_{2} (1 atm), RhCl(PPh $)_{3}$ (3 mol\%), benzene, RT, 4h	15%	52%	7%	26%
KOOCN=NCOOK (2 eq.), AcOH, MeOH, RT, 15h	44%	14%	33%	9%

Total Synthesis of Ipomoeassin B

Compound 9. $\mathrm{Et}_{3} \mathrm{~N}(43 \mu \mathrm{~L}, 0.305 \mathrm{mmol}$) and 2,4,6-trichlorobenzoyl chloride (22 mL , 0.139 mmol) were added to a solution of acid $\mathbf{8}$ ($39 \mathrm{mg}, 0.139 \mathrm{mmol}$) in toluene (0.6 mL) and the resulting mixture was stirred for 1.5 h at ambient temperature before a solution of the mixture of alcohols 7 and 6 ($54 \mathrm{mg}, 0.0693 \mathrm{mmol}$) and DMAP ($8.0 \mathrm{mg}, 0.0693 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was introduced. After stirring for 3 h , the mixture was filtered through a pad of silica, the filtrate was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 6/1) to give product 9 as a colorless oil ($56.8 \mathrm{mg}, 79 \%$). $[\alpha]_{\mathrm{D}}^{20}=-4.4$ (с $0.5, \mathrm{CHCl}_{3}$). IR (KAP): $\tilde{v}=3070,2956,2932,2904,2858,1730,1652,1612,1587$, $1513,1248,1160,1074,915,839,780,701 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.46$ (m, 2H), 7.26-7.18 (m, 10 H), 6.97-6.94 (m, 2H), 6.84-6.80 (m, 3H), 6.31 (s, 1H), 5.94 (ddt, $J=7.1,10.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08-4.99$ (m, 3H), 4.90 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 3 \mathrm{H})$, 3.36-3.34 (m, 2H), 2.29-2.26 (m, 2H), 1.76-1.75 (m, 6H), 1.56-1.24 (m, 11H), 0.86 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,165.8,164.8,159.0,144.7,138.3,137.9,135.4$, 133.9 (3C), 132.9, 130.3, 129.4 (2C), 128.6, 128.3, 127.8 (2C), 127.4 (2C), 126.8, 126.6 (2C), 116.5, 113.6, 109.7, 100.2, 99.8, 79.6, 78.7, 76.4, 76.0, 75.3, 73.6, 73.3, 73.1, 69.9, $68.5,68.4,55.2,38.5,36.6,27.7,26.3,25.7$ (3C), 18.3, 18.0, 16.7, 14.3, 14.1, 12.0, -0.8, -1.5, -3.9, -5.0. MS (EI): m/z (\%): 83 (14), 121 (100), 157 (9), 265 (30), 565 (4), 985 (2). HRMS: calcd. for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{O}_{13} \mathrm{Si}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$ 1065.518622, found 1065.517790 .

Synthesis of 11. DDQ ($49.0 \mathrm{mg}, 0.216 \mathrm{mmol}$) was added to a solution of compound 9 ($150 \mathrm{mg}, 0.144$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ and water (0.3 mL). The mixture was stirred at room temperature for 16 h before it was filtered through a pad of silica which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 6/1) to give alcohol 10 (150 mg) which contained p-methoxybenzaldehyde as an inseparable impurity.
$\mathrm{Et}_{3} \mathrm{~N}(45 \mu \mathrm{~L}, 0.318 \mathrm{mmol})$ and 2,4,6-trichlorobenzoyl chloride ($23 \mu \mathrm{~L}, 0.148 \mathrm{mmol}$) were added to a solution of 4-oxo-8-nonenoic acid ${ }^{13}$ ($25 \mathrm{mg}, 0.0862 \mathrm{mmol}$) in toluene $(1.0 \mathrm{~mL})$ and the mixture was stirred for 1.5 h before a solution of the crude alcohol $\mathbf{1 0}$ (75 mg, ca. 0.074 mmol) and DMAP ($9.0 \mathrm{mg}, 0.074 \mathrm{mmol}$) in toluene (1.5 mL) was introduced. Stirring was continued for 2 h , the mixture was passed through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 8/1) to give disaccharide 11 as a colorless syrup ($61.7 \mathrm{mg}, 78 \%$). $[\alpha]_{\mathrm{D}}^{20}=-4.2$ (c $0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3071,2956,2933,1732,1651,1588,1248,1157,914,839,780,730,701$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.95(\mathrm{~m}$, $2 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.93$ (ddt, $J=7.1,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (ddt, $J=6.4$, $10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.96(\mathrm{~m}, 5 \mathrm{H}), 4.94$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01-3.99 (m, 2H), 3.97 (dd, $J=2.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=7.6,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.67-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 6 \mathrm{H})$, 1.59-1.34 (m, 15 H), 0.89 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ (s, 9H), 0.39 (s, 3H), 0.27 (s, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.6,172.4,166.9,166.6$, 164.7, 144.7, 138.2, 138.0, 135.4, 133.8 (2C), 132.6, 128.7, 128.2, 127.9 (2C), 127.6 (2C), 126.9, 126.6 (2C), 116.5, 115.3, 109.7, 100.3, 99.8, 79.7, 79.1, 77.2, 76.5, 76.0, $75.2,73.2,71.5,69.4,68.6,63.0,41.9,38.6,37.1,36.7,33.1,28.0,27.8,26.4,25.7$ (3C), $22.8,18.3,18.0,16.7,14.4,14.1,12.1,-0.7,-1.4,-3.8,-4.9$. MS (EI): m/z (\%): 83 (68), 157 (29), 265 (100), 393 (30), 775 (9), 793 (42), 961 (13), 1017 (7). HRMS: calcd. for $\mathrm{C}_{59} \mathrm{H}_{86} \mathrm{O}_{14} \mathrm{Si}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 1097.544832, found 1097.544163.

Compound 14. The ruthenium carbene complex 12 ($5.0 \mathrm{mg}, 0.00558 \mathrm{mmol}$) was added

of (E) - and (Z)-isomers. to a solution of diene $\mathbf{1 1}(60 \mathrm{mg}, 0.0558 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting mixture was refluxed for 4 h before the reaction was quenched with ethyl vinyl ether. Evaporation of all volatile materials followed by flash chromatography of the residue (hexanes/EtOAc, 4/1) gave the corresponding metathesis product $\mathbf{1 3}$ as a mixture

[^5]A solution of cycloalkene 13 thus obtained ($42 \mathrm{mg}, 0.0398 \mathrm{mmol}$) and $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(7.0$ $\mathrm{mg}, 0.0076 \mathrm{mmol}$) in $\mathrm{EtOH}(0.6 \mathrm{~mL})$ was stirred under an atmosphere of $\mathrm{H}_{2}(1 \mathrm{~atm})$ overnight. Evaporation of the solvent and flash chromatography of the crude product (hexanes/EtOAc, 4/1) gave compound 14 as a colorless oil (34 mg, 81\%). $[\alpha]_{D}^{20}=+0.6$ (c $0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3069,2932,2858,1733,1652,1588,1248,1155$, 1074, 839, 780, 730, 701. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.17 (m, 6H), 6.97-6.95 (m, 2H), $6.86(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20-4.13 (m, 2H), 4.00-3.97 (m, 2H), 3.87 (dd, $J=6.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=7.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.31(\mathrm{~m}$, 5 H), 1.79-1.24 (m, 29H), $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}$, 3H), 0.05 (s, 3H), -0.04 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.6,171.4,166.8$, 166.3, 164.4, 144.7, 138.4, 138.2, 133.8 (2C), 132.7, 128.6, 128.2, 127.8 (2C), 127.5 (2C), 126.8, 126.6 (2C), 109.7, 101.5, 99.8, 82.0, 79.4, 76.5, 76.4, 75.6, 73.1, 71.7, 68.4, 68.3, 61.7, 42.3, 37.3, 37.0, 33.7, 28.7, 28.3, 28.0, 27.8, 26.3, 25.7 (3C), 24.0, 23.7, 18.4, 18.0, 16.8, 14.4, 14.3, 12.1, -0.5, -1.6, -3.8, -4.9. MS (EI): m/z (\%): 83 (91), 157 (29), 265 (100), 349 (13), 767 (36), 991 (9). HRMS: calcd. for $\mathrm{C}_{57} \mathrm{H}_{84} \mathrm{O}_{14} \mathrm{Si}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 1071.529187, found 1071.530087.

Synthesis of Ipomoeassin B (1). A solution of TASF ($79 \mathrm{mg}, 0.286 \mathrm{mmol}$) in MeCN $(2.0 \mathrm{~mL})$ was added to a solution of compound $\mathbf{1 4}(30 \mathrm{mg}, 0.0286 \mathrm{mmol})$ in wet MeCN $(1.5 \mathrm{~mL})$. After stirring for 4 h , the mixture was filtered through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated, and the residue was treated with trifluoroacetic acid ($16 \mu \mathrm{~L}, 215 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. After stirring for 3 h , the solution was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, the solvent was evaporated, and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 20 / 1\right)$ to afford Ipomoeassin B(1) as a colorless syrup which solidifies when kept in the freezer (10 mg , 45%). $[\alpha]_{\mathrm{D}}^{25}=-48.0$ (c 0.36, EtOH); lit. ${ }^{14}[\alpha]_{\mathrm{D}}^{25}=-39$ (c 0.3, EtOH). IR (KAP): $\tilde{v}=$ 3365, 3062, 2932, 1744, 1719, 1631, 1371, 1316, 1265, 1249, 1157, 1138, 1073. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) data, see Table S1 and S2, respectively. MS (EI): m/z (\%): 513 (11), 467 (14), 349 (10), 241 (13), 223 (42), 131 (44), 111 (13), 83 (100), 55 (28). HRMS: calcd. for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{14}\left[\mathrm{M}^{+}+\mathrm{Na}\right] 783.356230$, found 783.356291.

[^6]

Table S1. Comparison of the published ${ }^{1} \mathrm{H}$ NMR data ($\mathrm{C}_{6} \mathrm{D}_{6}$) of Ipomoeassin B (1) (500 MHz) with those of the synthetic sample (Bruker dpx300, 300 MHz). Numbering scheme as shown in the insert.

Position	Ipomoeassin B (J in Hz)	Synthetic Sample (J in Hz) ${ }^{a}$
2	2.38 ddd (17.4, 9.4, 3.4)	2.37 ddd (17.1, 9.3, 3.5)
	2.13 ddd (17.4, 7.7, 3.5)	2.15 ddd (17.1, 7.6, 3.3)
3	2.62 ddd (16.1, 7.7, 3.4)	2.63 ddd (16.1, 7.7, 3.3)
	2.50 ddd (16.1, 9.4, 3.5)	2.49 ddd (16.1, 9.2, 3.4)
5	2.07 t (6.2)	2.08 t (6.2)
11	3.71 m	3.73 m
14	0.96 t (7.1)	0.97 t (7.0)
1 '	4.38 d (7.6)	4.39 d (7.6)
2 '	3.88 dd (9.5, 7.6)	3.88 dd (9.8, 7.5)
3 '	3.65 dd (9.5, 3.3)	3.65 dd (9.6, 3.3)
4,	3.53 brs	3.53 br s
5 ,	3.11 brq (6.4)	$3.11 \mathrm{br} \mathrm{q} \mathrm{(6.3)}$
6 '	1.29 d (6.4)	1.29 d (6.4)
1"	4.59 d (7.8)	4.61 d (7.8)
2"	3.95 dd (9.7, 7.8)	3.95 dd (9.6, 8.0)
3"	5.50 t (9.7)	5.51 t (9.6)
4"	5.72 t (9.7)	5.73 t (9.6)
5"	3.44 brd (9.7)	3.46 brm
6"	4.66 dd (12.6, 2.1)	4.64 m
	4.16 brd (12.6)	4.18 br d (12.4)
31	6.40 d (16.1)	6.41 d (16.0)
32	7.81 d (16.1)	7.82 d (16.0)
34	6.88-7.07	6.88-7.08
35	6.88-7.07	6.88-7.08
36	6.88-7.07	6.88-7.08
42	6.95 m	6.94 m
43	1.27 d (7.1)	1.29 d (7.1)
44	1.72 brs	1.73 brs

[^7]Table S2. Comparison of the published ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of Ipomoeassin B (1) $(100 \mathrm{MHz})$ with those of the synthetic samples (Bruker DMX-600, 150 MHz).

Position	Ipomoeassin B	Synthetic Sample
1	171.5	171.6
2	37.4	37.4
3	29.5	29.6
4	208.3	208.5
5	41.5	41.6
6	23.6	23.7
7	28.6	28.7
8	29.3	29.4
9	25.4	25.5
10	34.3	34.4
11	78.8	78.9
12	37.4	37.4
13	18.8	18.8
14	14.3	14.4
1 '	100.6	100.6
2'	83.7	83.7
3 '	74.2	74.2
4'	71.6	71.7
5'	70.2	70.2
6 '	14.0	14.1
1"	106.4	106.5
2"	74.6	74.6
3"	76.3	76.4
4"	67.8	67.9
5"	73.0	73.1
6"	61.4	61.5
30	165.5	165.6
31	117.6	117.7
32	146.0	146.1
33	134.4	134.5
34	128.4	128.5
35	128.8	128.9
36	130.3	130.4
40	168.5	168.6
41	128.0	127.9
42	139.1	139.2
43	16.6	16.6
44	12.0	12.1

Total Synthesis of Ipomoeassin E

Disaccharide 20. DDQ ($19.0 \mathrm{mg}, 0.0830 \mathrm{mmol}$) was added to a solution of compound $9(57.7 \mathrm{mg}, 0.0553 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and water (0.1 mL), and the resulting mixture was stirred at ambient temperature for 16 h . The suspension was then filtered through a pad of silica which was rinsed with ethyl acetate, the combined filtrates were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 6/1) to give alcohol $10(45.6 \mathrm{mg})$ which contained traces of p-methoxybenzaldehyde.

$\mathrm{Et}_{3} \mathrm{~N} \quad(26 \quad \mu \mathrm{~L}, \quad 0.185 \quad \mathrm{mmol}) \quad$ and 2,4,6-trichlorobenzoyl chloride ($13 \mathrm{~mL}, 0.0862$ mmol) were added to a solution of carboxylic acid $19(19.7 \mathrm{mg}, 0.0862 \mathrm{mmol})$ in toluene (0.5 mL). After stirring for 1.5 h at ambient temperature, a solution of the crude alcohol $10(45.6 \mathrm{mg})$ and DMAP ($5.0 \mathrm{mg}, 0.0431 \mathrm{mmol}$) in toluene (1.0 mL) was introduced and stirring was continued for 2 h . The mixture was then filtered through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 8/1) to give product 20 as a colorless syrup ($54.6 \mathrm{mg}, 87 \%$ over both steps). $[\alpha]_{\mathrm{D}}^{20}=-3.7$ (c 0.40 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3072,2956,2932,2858,1732,1651,1642,1586,1428,1248$, 1113, 916, 839, 780. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}$, 6H), 7.00-6.97 (m, 2H), 6.82 (m, 1H), 6.33 (s, 1H), 5.89 (ddt, $J=6.9,10.2,17.2 \mathrm{~Hz}$, 1H), 5.81 (ddt, $J=6.6,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.25 (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.99$ (m, 7H), $4.30(\mathrm{~d}, ~ J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.99(\mathrm{dd}, J=1.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.65$ $(\mathrm{m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 5 \mathrm{H}), 1.96-1.74$ (m, 8H), 1.55-1.32 (m, 13 H), 0.90 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.81 (s, 9H), 0.37 (s, 3H), 0.28 (s, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=205.8,172.4,170.7$, 167.1, 166.9, 165.0, 145.1, 138.7, 137.5, 135.6, 134.2 (2C), 133.0, 129.0, 128.5, 128.2 (2C), 127.9 (2C), 127.2, 126.9 (2C), 116.8, 115.9, 110.0, 100.1, 100.0, 80.2, 78.6, 78.0, 77.1, 76.4, 75.6, 73.5, 72.0, 69.6, 69.0, 63.1, 38.8, 36.9, 33.7, 33.6, 30.1, 29.6, 28.2, 27.5, 26.4, 25.8 (3C), 20.8, 18.8, 18.2, 16.7, 14.6, 14.2, 12.2, -0.7, -1.2, -3.6, -4.8. MS (EI): m/z (\%): 83 (63), 157 (29), 265 (100), 265 (100), 451 (32), 833 (10), 851 (49), 1019 (17), 1075 (8). HRMS: calcd. for $\mathrm{C}_{61} \mathrm{H}_{88} \mathrm{O}_{16} \mathrm{Si}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 1155.550316, found 1155.548973.

Product 21. The ruthenium carbene complex $12(6.0 \mathrm{mg}, 0.00653 \mathrm{mmol})$ was added to
 a solution of compound $\mathbf{2 0}$ ($74 \mathrm{mg}, 0.0653 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the resulting mixture was refluxed for 4 h before the reaction was quenched with ethyl vinyl ether. Evaporation of all volatile materials followed by flash chromatography of the residue (hexanes/EtOAc, 4/1) gave the corresponding cycloalkene (E,Z-mixture). This product was dissolved in EtOH (1.0 mL) and stirred overnight in the presence $\operatorname{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(12 \mathrm{mg}, 0.0125 \mathrm{mmol})$ under an atmosphere of $\mathrm{H}_{2}(1 \mathrm{~atm})$. The catalyst was filtered off through a pad of silica, the filtrate was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 4/1) to give compound 21 as a colorless syrup ($60 \mathrm{mg}, 83 \%$ over both steps). $[\alpha]_{\mathrm{D}}^{20}=+0.4$ (c $0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KAP): $\tilde{v}=3069,2931,2858,1732,1652$, 1588, 1379, 1371, 1247, 1155, 1074, 839, 780, 731, 702. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H})$, 5.28 (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=2.0,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86 (dd, $J=6.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (m, 1H), 3.65 (dt, $J=2.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54-3.48$ (m, 2H), 2.87 (dt, $J=6.8,18.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (dt, $J=6.8,18.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (m, 2H), 2.14 (s, 3H), 1.77-1.26 (m, 30 H$), 0.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H})$, 0.23 (s, 3H), 0.05 (s, 3H), $-0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,170.9$, 170.6, 166.8, 166.6, 164.4, 144.6, 138.3, 138.0, 133.6 (2C), 132.5, 128.7, 128.2, 127.9 (2C), 127.6 (2C), 126.9, 126.6 (2C), 109.7, 101.3, 99.7, 81.9, 79.4, 78.4, 77.2, 76.3, $75.4,73.1,71.6,68.5,68.3,61.8,37.3,33.9,33.8,29.9,28.5,28.0,27.8,26.3,25.6$ (3C), 24.2 (2C), 20.6, 18.3, 18.0, 16.8, 14.4, 14.3, 12.1, -0.4, -1.6, -3.8, -4.9. MS (EI): m/z (\%): 83 (66), 157 (26), 265 (100), 567 (11), 825 (41), 1049 (9). HRMS: calcd. for $\mathrm{C}_{59} \mathrm{H}_{86} \mathrm{O}_{16} \mathrm{Si}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 1129.534663, found 1129.535235.

Ipomoeassin E (2). A solution of TASF ($75 \mathrm{mg}, 0.27 \mathrm{mmol}$) in MeCN (1.0 mL) was added to a solution of compound $21(30 \mathrm{mg}, 0.027 \mathrm{mmol})$ in wet $\mathrm{MeCN}(1.0 \mathrm{~mL})$ and the resulting mixture was stirred for 5 h before it was filtered through a pad of silica which was carefully rinsed with EtOAc. The combined filtrates were evaporated and the residue was treated with trifluoroacetic acid ($36 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ for 3 h at ambinent temperature. The mixture was neutralized with triethylamine and concentrated in vacuo, and the crude product was purified by preparative HPLC (YMC-PACK ODS A, $5 \mu \mathrm{~m} 12 \mathrm{~nm}$; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=70 / 30$; flow rate: $10 \mathrm{~mL} / \mathrm{min}$;
pressure: 3.6 MPa) to afford Ipomoeassin E (2) as a colorless syrup which solidifies when kept in the freezer ($14 \mathrm{mg}, 63 \%$ over both steps). $[\alpha]_{\mathrm{D}}^{25}=-32$ (c 0.21 , EtOH); lit. $[\alpha]_{\mathrm{D}}^{25}=-24$ (c 0.2, EtOH). IR (KAP): $\tilde{v}=3408,2933,2869,1725,1636,1450,1374$, 1309, 1248, 1156, 1073, 768. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) and ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) data, see Table S3 and S4, respectively. MS (EI): m/z (\%): 655 (5), 571 (7), 525 (7), 407 (9), 281 (40), 239 (11), 221 (19), 192 (11), 131 (58), 110 (10), 83 (100), 55 (20), 43 (19). HRMS: calcd. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{16}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 841.36172, found 841.362452.

Table S3. Comparison of the ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ reported for Ipomoeassin E (2) (500 MHz) with those of the synthetic material recorded on a Bruker av400 spectrometer (400 MHz). Numbering scheme as shown in the insert.

Position	Ipomoeassin E (J in Hz)	Synthetic Sample (J in Hz) ${ }^{\text {a,b }}$
2	2.55 ddd (18.1, 9.2, 2.8)	2.59 ddd (18.0, 9.2, 3.1)
	2.34 ddd (18.1, 7.8, 3.4)	2.46-2.36 m
3	2.81 ddd (16.3, 9.2, 3.4)	2.82 ddd (16.5, 9.2, 3.5)
	2.39 ddd (16.3, 7.8, 2.8)	2.46-2.36 m
5	5.04 dd (6.2, 3.9)	5.07 dd (6.1, 3.9)
11	3.71 m	3.74 brm
14	0.97 t (6.9)	0.99 t (7.0)
1 '	4.28 d (7.6)	4.32 d (7.6)
2'	3.80 dd (9.5, 7.6)	3.82 appt (9.4)
3 '	3.55 dd (9.5, 3.7)	3.59 dd (9.3, 3.2)
4,	3.44 brs	3.48 brs
5,	3.02 brq (6.4)	3.09 brq (6.4)
6 '	1.25 d (6.4)	1.28 d (6.6)
1"	4.50 d (7.8)	4.55 d (8.0)
2"	3.81 dd (9.7, 7.8)	3.84 appt (9.5)
3"	5.38 t (9.7)	5.43 t (9.5)
4"	5.70 t (9.7)	5.71 t (9.7)
5"	3.36 brd (9.7)	3.43 brd (9.8)
6"	4.51 dd (11.0, 2.0)	4.52 dd (11.4, 2.2)
	4.20 brd (11.0)	4.24 brd (11.5)
21	1.67 brs	1.73 brs
31	6.40 d (16.1)	6.41 d (16.0)
32	7.81 d (16.1)	7.82 d (16.0)
34	6.88-7.03	6.91-7.09
35	6.88-7.03	6.91-7.09
36	6.88-7.03	6.91-7.09
42	6.95 m	6.95 m
43	1.25 d (7.1)	1.30 d (7.3)
44	1.67 brs	1.73 brs

[^8]Table S4. Comparison of the ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ reported for Ipomoeassin E (2) (125 MHz) with those of the synthetic sample (Bruker AMX-300 spectrometer, 75 MHz).

Position	Natural Product	Synthetic Sample
1	171.4	171.4
2	34.0	34.1
3	28.3	28.3
4	205.8	205.7
5	78.2	78.2
6	30.3	30.3
7	24.0	24.0
8	30.5	30.5
9	25.2	25.2
10	34.0	34.1
11	78.5	78.5
12	37.7	37.7
13	18.9	19.0
14	14.4	14.4
1 '	100.5	100.4
2 '	84.2	84.3
3 '	74.0	74.0
4 '	71.6	71.6
5'	70.0	70.0
6 ,	14.1	14.1
1"	106.7	106.7
2"	74.9	74.9
3"	76.6	76.7
4"	67.7	67.7
5"	72.9	73.0
6 "	61.2	61.3
20	169.8	169.8
21	20.3	20.3
30	165.5	165.5
31	117.5	117.6
32	146.2	146.2
33	134.4	134.5
34	128.3	128.2
35	128.5	128.3
36	130.4	130.4
40	168.9	168.9
41	128.0	128.0
42	139.6	139.5
43	16.6	16.5
44	12.0	12.0

(घ)
${ }^{9} \mathrm{a}^{9}$ ว рэा!़!
${ }^{1}$ H NMR spectra of Compound 1 at different concentrations showed remarkable change of chemical shift. (a) 14 mg in 0.6 mL of

Spectra of New Compounds

IO－ロでーシN－9シN

E0-0己よ- $\mathrm{VN}-9 \forall N$

V0-09【- $\forall \mathrm{N}-9 \forall \mathrm{~N}$

$20-700-\forall N-9 \forall N$

$20-700-\forall N-9 \forall N$

โ0-9ヤレ- $\forall N-9 \forall N$

โ0-Eとโ-ఈN-9甘N

โ0-Eモ0-8N-9४N

โ0-E६0-8N-9४N

20－6ट己－$\forall N-9 \forall N$

	$\stackrel{\rightharpoonup}{8}$		ㅎ		B
	\#w				흥를
	ㄷ 조N ${ }^{\text {a }}$		部品鿬		
		～		场䒨	

$10-070-8 N-9 \forall N$

-166.843

$10-0 D 0-8 N-97 N$

			0	
	$\stackrel{\square}{8}$	高		\therefore ○○
			䍐今口	
	त 줓 ${ }^{\text {a }}$	조N号新妄		

20-8E0-8N-9VN

[^0]: 1 Kang, S.-K.; Park, D.-C.; Rho, H.-S.; Yu, C.-M.; Hong, J.-H. Synth. Comm. 1995, 25, 203-214.
 ${ }^{2}$ Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.; Pitsinos, E. N.; Saimoto, H.; Mizuno, Y.; Baldenius, K.-U.; Smith, A. L. J. Am. Chem. Soc. 1993, 115, 7625-7635.

[^1]: ${ }^{3}$ Georgiadis, M. P.; Tsekouras, A.; Kotretsou, S. I.; Haroutounian, S. A.; Polissiou, M. G. Synthesis 1991, 929.

[^2]: 4 Fürstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.; Mynott, R. J. Org. Chem. 2000, 65, 8758-8762.

[^3]: 5 (a) Ukaji, Y.; Sada, K.; Inomata, K. Chem. Lett. 1993, 1227-1230. (b) See also: Amold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001, 123, 5841-5842.

[^4]: 12 Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371-2374.

[^5]: ${ }^{13}$ Hodgson, D. M.; Stupple, P. A.; Pierard, F. Y. T. M.; Labande, A. H.; Johnstone, C. Chem. Eur. J. 2001, 7, 4465.

[^6]: ${ }^{14}$ Cao, S.; Guza, R. C.; Wisse J. H.; Miller, J. S.; Evans, R.; Kingston, D. G. I. J. Nat. Prod. 2005, 68, 487.

[^7]: ${ }^{a}$ The protons at positions 6-10, 12 and 13 appear between $\delta 1.73-1.26$ as complicated multiplet.

[^8]: ${ }^{\text {a }}$ The chemical shifts depend on the concentration of the sample and the dryness of the $\mathrm{C}_{6} \mathrm{D}_{6}$ used; see below; the data compiled in this Table were recorded using 3 mg of compound 2 in 0.6 mL of freshly distilled $\left(\mathrm{CaH}_{2}\right) \mathrm{C}_{6} \mathrm{D}_{6} .{ }^{b}$ The protons at positions 6-10, 12 and 13 appear between $\delta 1.96-1.36$ as complicated multiplet.

